Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 104, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173775

RESUMO

BACKGROUND: Cyanobacteria and eukaryotic phytoplankton produce long-chain alkanes and generate around 100 times greater quantities of hydrocarbons in the ocean compared to natural seeps and anthropogenic sources. Yet, these compounds do not accumulate in the water column, suggesting rapid biodegradation by co-localized microbial populations. Despite their ecological importance, the identities of microbes involved in this cryptic hydrocarbon cycle are mostly unknown. Here, we identified genes encoding enzymes involved in the hydrocarbon cycle across the salinity gradient of a remote, vertically stratified, seawater-containing High Arctic lake that is isolated from anthropogenic petroleum sources and natural seeps. Metagenomic analysis revealed diverse hydrocarbon cycling genes and populations, with patterns of variation along gradients of light, salinity, oxygen, and sulfur that are relevant to freshwater, oceanic, hadal, and anoxic deep sea ecosystems. RESULTS: Analyzing genes and metagenome-assembled genomes down the water column of Lake A in the Canadian High Arctic, we detected microbial hydrocarbon production and degradation pathways at all depths, from surface freshwaters to dark, saline, anoxic waters. In addition to Cyanobacteria, members of the phyla Flavobacteria, Nitrospina, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia had pathways for alkane and alkene production, providing additional sources of biogenic hydrocarbons. Known oil-degrading microorganisms were poorly represented in the system, while long-chain hydrocarbon degradation genes were identified in various freshwater and marine lineages such as Actinobacteria, Schleiferiaceae, and Marinimicrobia. Genes involved in sulfur and nitrogen compound transformations were abundant in hydrocarbon producing and degrading lineages, suggesting strong interconnections with nitrogen and sulfur cycles and a potential for widespread distribution in the ocean. CONCLUSIONS: Our detailed metagenomic analyses across water column gradients in a remote petroleum-free lake derived from the Arctic Ocean suggest that the current estimation of bacterial hydrocarbon production in the ocean could be substantially underestimated by neglecting non-phototrophic production and by not taking low oxygen zones into account. Our findings also suggest that biogenic hydrocarbons may sustain a large fraction of freshwater and oceanic microbiomes, with global biogeochemical implications for carbon, sulfur, and nitrogen cycles. Video Abstract.


Assuntos
Hidrocarbonetos , Microbiota , Canadá , Hidrocarbonetos/metabolismo , Microbiota/genética , Alcanos/metabolismo , Bactérias/genética , Genômica , Água , Lagos/microbiologia , Oxigênio/metabolismo , Enxofre/metabolismo
2.
ISME Commun ; 2(1): 4, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37938653

RESUMO

DPANN archaea account for half of the archaeal diversity of the biosphere, but with few cultivated representatives, their metabolic potential and environmental functions are poorly understood. The extreme geochemical and environmental conditions in meromictic ice-capped Lake A, in the Canadian High Arctic, provided an isolated, stratified model ecosystem to resolve the distribution and metabolism of uncultured aquatic DPANN archaea living across extreme redox and salinity gradients, from freshwater oxygenated conditions, to saline, anoxic, sulfidic waters. We recovered 28 metagenome-assembled genomes (MAGs) of DPANN archaea that provided genetic insights into their ecological function. Thiosulfate oxidation potential was detected in aerobic Woesearchaeota, whereas diverse metabolic functions were identified in anaerobic DPANN archaea, including degradation and fermentation of cellular compounds, and sulfide and polysulfide reduction. We also found evidence for "vampiristic" metabolism in several MAGs, with genes coding for pore-forming toxins, peptidoglycan degradation, and RNA scavenging. The vampiristic MAGs co-occurred with other DPANNs having complementary metabolic capacities, leading to the possibility that DPANN form interspecific consortia that recycle microbial carbon, nutrients and complex molecules through a DPANN archaeal shunt, adding hidden novel complexity to anaerobic microbial food webs.

3.
Front Microbiol ; 13: 1073483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699594

RESUMO

Patescibacteria form a highly diverse and widespread superphylum of uncultured microorganisms representing a third of the global microbial diversity. Most of our knowledge on Patescibacteria putative physiology relies on metagenomic mining and metagenome-assembled genomes, but the in situ activities and the ecophysiology of these microorganisms have been rarely explored, leaving the role of Patescibacteria in ecosystems elusive. Using a genome-centric metatranscriptomic approach, we analyzed the diel and seasonal gene transcription profiles of 18 Patescibacteria populations in brackish microbial mats to test whether our understanding of Patescibacteria metabolism allows the extrapolation of their in situ activities. Although our results revealed a circadian cycle in Patescibacteria activities, a strong streamlined genetic expression characterized the Patescibacteria populations. This result has a major consequence for the extrapolation of their physiology and environmental function since most transcribed genes were uncharacterized, indicating that the ecophysiology of Patescibacteria cannot be yet reliably predicted from genomic data.

4.
NPJ Biofilms Microbiomes ; 7(1): 83, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799579

RESUMO

Methylmercury, biomagnifying through food chains, is highly toxic for aquatic life. Its production and degradation are largely driven by microbial transformations; however, diversity and metabolic activity of mercury transformers, resulting in methylmercury concentrations in environments, remain poorly understood. Microbial mats are thick biofilms where oxic and anoxic metabolisms cooccur, providing opportunities to investigate the complexity of the microbial mercury transformations over contrasted redox conditions. Here, we conducted a genome-resolved metagenomic and metatranscriptomic analysis to identify putative activity of mercury reducers, methylators and demethylators in microbial mats strongly contaminated by mercury. Our transcriptomic results revealed the major role of rare microorganisms in mercury cycling. Mercury methylators, mainly related to Desulfobacterota, expressed a large panel of metabolic activities in sulfur, iron, nitrogen, and halogen compound transformations, extending known activities of mercury methylators under suboxic to anoxic conditions. Methylmercury detoxification processes were dissociated in the microbial mats with methylmercury cleavage being carried out by sulfide-oxidizing Thiotrichaceae and Rhodobacteraceae populations, whereas mercury reducers included members of the Verrucomicrobia, Bacteroidetes, Gammaproteobacteria, and different populations of Rhodobacteraceae. However most of the mercury reduction was potentially carried out anaerobically by sulfur- and iron-reducing Desulfuromonadaceae, revising our understanding of mercury transformers ecophysiology.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Bactérias/genética , Mercúrio/toxicidade , Metagenoma , Transcriptoma
5.
Microorganisms ; 9(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670234

RESUMO

Over the last decade, metagenomic studies have revealed the impact of oil production on the microbial ecology of petroleum reservoirs. However, despite their fundamental roles in bioremediation of hydrocarbons, biocorrosion, biofouling and hydrogen sulfide production, oil field and oil production infrastructure microbiomes are poorly explored. Understanding of microbial activities within oil production facilities is therefore crucial for environmental risk mitigation, most notably during decommissioning. The analysis of the planktonic microbial community from the aqueous phase of a subsea oil-storage structure was conducted. This concrete structure was part of the production platform of the Brent oil field (North Sea), which is currently undergoing decommissioning. Quantification and sequencing of microbial 16S rRNA genes, metagenomic analysis and reconstruction of metagenome assembled genomes (MAGs) revealed a unique microbiome, strongly dominated by organisms related to Dethiosulfatibacter and Cloacimonadetes. Consistent with the hydrocarbon content in the aqueous phase of the structure, a strong potential for degradation of low molecular weight aromatic hydrocarbons was apparent in the microbial community. These degradation pathways were associated with taxonomically diverse microorganisms, including the predominant Dethiosulfatibacter and Cloacimonadetes lineages, expanding the list of potential hydrocarbon degraders. Genes associated with direct and indirect interspecies exchanges (multiheme type-C cytochromes, hydrogenases and formate/acetate metabolism) were widespread in the community, suggesting potential syntrophic hydrocarbon degradation processes in the system. Our results illustrate the importance of genomic data for informing decommissioning strategies in marine environments and reveal that hydrocarbon-degrading community composition and metabolisms in man-made marine structures might differ markedly from natural hydrocarbon-rich marine environments.

6.
Microbiome ; 9(1): 46, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593438

RESUMO

BACKGROUND: The sulfur cycle encompasses a series of complex aerobic and anaerobic transformations of S-containing molecules and plays a fundamental role in cellular and ecosystem-level processes, influencing biological carbon transfers and other biogeochemical cycles. Despite their importance, the microbial communities and metabolic pathways involved in these transformations remain poorly understood, especially for inorganic sulfur compounds of intermediate oxidation states (thiosulfate, tetrathionate, sulfite, polysulfides). Isolated and highly stratified, the extreme geochemical and environmental features of meromictic ice-capped Lake A, in the Canadian High Arctic, provided an ideal model ecosystem to resolve the distribution and metabolism of aquatic sulfur cycling microorganisms along redox and salinity gradients. RESULTS: Applying complementary molecular approaches, we identified sharply contrasting microbial communities and metabolic potentials among the markedly distinct water layers of Lake A, with similarities to diverse fresh, brackish and saline water microbiomes. Sulfur cycling genes were abundant at all depths and covaried with bacterial abundance. Genes for oxidative processes occurred in samples from the oxic freshwater layers, reductive reactions in the anoxic and sulfidic bottom waters and genes for both transformations at the chemocline. Up to 154 different genomic bins with potential for sulfur transformation were recovered, revealing a panoply of taxonomically diverse microorganisms with complex metabolic pathways for biogeochemical sulfur reactions. Genes for the utilization of sulfur cycle intermediates were widespread throughout the water column, co-occurring with sulfate reduction or sulfide oxidation pathways. The genomic bin composition suggested that in addition to chemical oxidation, these intermediate sulfur compounds were likely produced by the predominant sulfur chemo- and photo-oxidisers at the chemocline and by diverse microbial degraders of organic sulfur molecules. CONCLUSIONS: The Lake A microbial ecosystem provided an ideal opportunity to identify new features of the biogeochemical sulfur cycle. Our detailed metagenomic analyses across the broad physico-chemical gradients of this permanently stratified lake extend the known diversity of microorganisms involved in sulfur transformations over a wide range of environmental conditions. The results indicate that sulfur cycle intermediates and organic sulfur molecules are major sources of electron donors and acceptors for aquatic and sedimentary microbial communities in association with the classical sulfur cycle. Video abstract.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Ecossistema , Lagos/microbiologia , Metagenoma , Enxofre/metabolismo , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Canadá , Oxirredução
7.
Microorganisms ; 8(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105630

RESUMO

Streams and rivers convey freshwater from lands to the oceans, transporting various organic particles, minerals, and living organisms. Microbial communities are key components of freshwater food webs and take up, utilize, and transform this material. However, there are still important gaps in our understanding of the dynamic of these organisms along the river channels. Using high-throughput 16S and 18S rRNA gene sequencing and quantitative PCR on a 11-km long transect of the Saint-Charles River (Quebec, CA), starting from its main source, the Saint-Charles Lake, we show that bacterial and protist community structures in the river drifted quickly but progressively downstream of its source. The dominant Operational Taxonomic Units (OTUs) of the lake, notably related to Cyanobacteria, decreased in proportions, whereas relative proportions of other OTUs, such as a Pseudarcicella OTU, increased along the river course, becoming quickly predominant in the river system. Both prokaryotic and protist communities changed along the river transect, suggesting a strong impact of the shift from a stratified lake ecosystem to a continuously mixed river environment. This might reflect the cumulative effects of the increasing water turbulence, fluctuations of physicochemical conditions, differential predation pressure in the river, especially in the lake outlet by benthic filter feeders, or the relocation of microorganisms, through flocculation, sedimentation, resuspension, or inoculation from the watershed. Our study reveals that the transit of water in a river system can greatly impact both bacterial and micro-eukaryotic community composition, even over a short distance, and, potentially, the transformation of materials in the water column.

8.
Front Microbiol ; 10: 2359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681222

RESUMO

Protists are key stone components of aquatic ecosystems, sustaining primary productivity and aquatic food webs. However, their diversity, ecology and structuring factors shaping their temporal distribution remain strongly misunderstood in freshwaters. Using high-throughput sequencing on water samples collected over 16 different months (including two summer and two winter periods), combined with geochemical measurements and climate monitoring, we comprehensively determined the pico- and nanoeukaryotic community composition and dynamics in a Canadian river undergoing prolonged ice-cover winters. Our analysis revealed a large protist diversity in this fluctuating ecosystem and clear seasonal patterns demonstrating a direct and/or indirect selective role of abiotic factors, such as water temperature or nitrogen concentrations, in structuring the eukaryotic microbial community. Nonetheless, our results also revealed that primary productivity, predatory as well as parasitism lifestyles, inferred from fine phylogenetic placements, remained potentially present over the annual cycle, despite the large seasonal fluctuations and the remodeling of the community composition under ice. In addition, potential interplays with the bacterial community composition were identified supporting a possible contribution of the bacterial community to the temporal dynamics of the protist community structure. Our results illustrate the complexity of the eukaryotic microbial community and provide a substantive and useful dataset to better understand the global freshwater ecosystem functioning.

9.
Microorganisms ; 7(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652931

RESUMO

The thawing of ice-rich permafrost soils in northern peatlands leads to the formation of thermokarst ponds, surrounded by organic-rich soils. These aquatic ecosystems are sites of intense microbial activity, and CO2 and CH4 emissions. Many of the pond systems in northern landscapes and their surrounding peatlands are hydrologically contiguous, but little is known about the microbial connectivity of concentric habitats around the thermokarst ponds, or the effects of peat accumulation and infilling on the microbial communities. Here we investigated microbial community structure and abundance in a thermokarst pond-peatland system in subarctic Canada. Several lineages were ubiquitous, supporting a prokaryotic continuum from the thermokarst pond to surrounding peatlands. However, the microbial community structure shifted from typical aerobic freshwater microorganisms (Betaproteobacteria and Alphaproteobacteria) in the pond towards acidophilic and anaerobic lineages (Acidobacteria and Choroflexi) in the connected peatland waters, likely selected by the acidification of the water by Sphagnum mosses. Marked changes in abundance and community composition of methane cycling microorganisms were detected along the thermokarst pond-peatland transects, suggesting fine tuning of C-1 carbon cycling within a highly connected system, and warranting the need for higher spatial resolution across the thermokarst landscape to accurately predict net greenhouse gas emissions from northern peatlands.

10.
Front Microbiol ; 10: 1656, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379798

RESUMO

Permafrost thawing results in the formation of thermokarst lakes, which are biogeochemical hotspots in northern landscapes and strong emitters of greenhouse gasses to the atmosphere. Most studies of thermokarst lakes have been in summer, despite the predominance of winter and ice-cover over much of the year, and the microbial ecology of these waters under ice remains poorly understood. Here we first compared the summer versus winter microbiomes of a subarctic thermokarst lake using DNA- and RNA-based 16S rRNA amplicon sequencing and qPCR. We then applied comparative metagenomics and used genomic bin reconstruction to compare the two seasons for changes in potential metabolic functions in the thermokarst lake microbiome. In summer, the microbial community was dominated by Actinobacteria and Betaproteobacteria, with phototrophic and aerobic pathways consistent with the utilization of labile and photodegraded substrates. The microbial community was strikingly different in winter, with dominance of methanogens, Planctomycetes, Chloroflexi and Deltaproteobacteria, along with various taxa of the Patescibacteria/Candidate Phyla Radiation (Parcubacteria, Microgenomates, Omnitrophica, Aminicenantes). The latter group was underestimated or absent in the amplicon survey, but accounted for about a third of the metagenomic reads. The winter lineages were associated with multiple reductive metabolic processes, fermentations and pathways for the mobilization and degradation of complex organic matter, along with a strong potential for syntrophy or cross-feeding. The results imply that the summer community represents a transient stage of the annual cycle, and that carbon dioxide and methane production continue through the prolonged season of ice cover via a taxonomically distinct winter community and diverse mechanisms of permafrost carbon transformation.

11.
mSystems ; 4(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834326

RESUMO

Gulf of Mexico sediments harbor numerous hydrocarbon seeps associated with high sedimentation rates and thermal maturation of organic matter. These ecosystems host abundant and diverse microbial communities that directly or indirectly metabolize components of the emitted fluid. To investigate microbial function and activities in these ecosystems, metabolic potential (metagenomic) and gene expression (metatranscriptomic) analyses of two cold seep areas of the Gulf of Mexico were carried out. Seeps emitting biogenic methane harbored microbial communities dominated by archaeal anaerobic methane oxidizers of phylogenetic group 1 (ANME-1), whereas seeps producing fluids containing a complex mixture of thermogenic hydrocarbons were dominated by ANME-2 lineages. Metatranscriptome measurements in both communities indicated high levels of expression of genes for methane metabolism despite their distinct microbial communities and hydrocarbon composition. In contrast, the transcription level of sulfur cycle genes was quite different. In the thermogenic seep community, high levels of transcripts indicative of syntrophic anaerobic oxidation of methane (AOM) coupled to sulfate reduction were detected. This syntrophic partnership between the dominant ANME-2 and sulfate reducers potentially involves direct electron transfer through multiheme cytochromes. In the biogenic methane seep, genes from an ANME-1 lineage that are potentially involved in polysulfide reduction were highly expressed, suggesting a novel bacterium-independent anaerobic methane oxidation pathway coupled to polysulfide reduction. The observed divergence in AOM activities provides a new model for bacterium-independent AOM and emphasizes the variation that exists in AOM pathways between different ANME lineages. IMPORTANCE Cold seep sediments are complex and widespread marine ecosystems emitting large amounts of methane, a potent greenhouse gas, and other hydrocarbons. Within these sediments, microbial communities play crucial roles in production and degradation of hydrocarbons, modulating oil and gas emissions to seawater. Despite this ecological importance, our understanding of microbial functions and methane oxidation pathways in cold seep ecosystems is poor. Based on gene expression profiling of environmental seep sediment samples, the present work showed that (i) the composition of the emitted fluids shapes the microbial community in general and the anaerobic methanotroph community specifically and (ii) AOM by ANME-2 in this seep may be coupled to sulfate reduction by Deltaproteobacteria by electron transfer through multiheme cytochromes, whereas AOM by ANME-1 lineages in this seep may involve a different, bacterium-independent pathway, coupling methane oxidation to elemental sulfur/polysulfide reduction.

12.
Front Microbiol ; 9: 2881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564204

RESUMO

Microbial mats are ubiquitous in polar freshwater ecosystems and sustain high concentrations of biomass despite the extreme seasonal variations in light and temperature. Here we aimed to resolve genomic adaptations for light-harvesting, bright-light protection, and carbon flow in mats that undergo seasonal freeze-up. To bracket a range of communities in shallow water habitats, we sampled cyanobacterial mats in the thawed littoral zone of two lakes situated at the northern and southern limits of the Canadian Arctic permafrost zone. We applied a multiphasic approach using pigment profiles from high performance liquid chromatography, Illumina MiSeq sequencing of the 16S and 18S rRNA genes, and metagenomic analysis. The mats shared a taxonomic and functional core microbiome, dominated by oxygenic cyanobacteria with light-harvesting and photoprotective pigments, bacteria with bacteriochlorophyll, and bacteria with light-driven Type I rhodopsins. Organisms able to use light for energy related processes represented up to 85% of the total microbial community, with 15-30% attributable to cyanobacteria and 55-70% attributable to other bacteria. The proportion of genes involved in anaplerotic CO2 fixation was greater than for genes associated with oxygenic photosynthesis. Diverse heterotrophic bacteria, eukaryotes (including metazoans and fungi) and viruses co-occurred in both communities. The results indicate a broad range of strategies for capturing sunlight and CO2, and for the subsequent flow of energy and carbon in these complex, light-driven microbial ecosystems.

13.
ISME J ; 12(8): 2096-2099, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29805176

RESUMO

Sulfite-reducing and sulfate-reducing microorganisms (SRM) play important roles in anoxic environments, linking the sulfur and carbon cycles. With climate warming, the distribution of anoxic habitats conductive to dissimilatory SRM is expanding. Consequently, we hypothesize that novel SRM are likely to emerge from the rare biosphere triggered by environmental changes. Using the dsrB gene as a  molecular marker of sulfite-reducers and sulfate-reducers, we analyzed the diversity, community composition, and abundance of SRM in 200 samples representing 14 different ecosystems, including marine and freshwater environments, oil reservoirs, and engineered infrastructure. Up to 167,397 species-level OTUs affiliated with 47 different families were identified. Up to 96% of these can be considered as "rare biosphere SRM". One  third of the dsrB genes identified belonged to uncharacterized lineages. The dsrB sequences exhibited a  strong pattern of selection in different ecosystems. These results expand our knowledge of the biodiversity and distribution of SRM, with implications for carbon and sulfur cycling in anoxic ecosystems.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Água Doce/microbiologia , Água do Mar/química , Sulfatos/metabolismo , Sulfitos/metabolismo , Bactérias/classificação , Bactérias/genética , Ecossistema , Oxirredução , Filogenia
14.
Sci Rep ; 7(1): 16015, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167487

RESUMO

Oil and gas percolate profusely through the sediments of the Gulf of Mexico, leading to numerous seeps at the seafloor, where complex microbial, and sometimes animal communities flourish. Sediments from three areas (two cold seeps with contrasting hydrocarbon composition and a site outside any area of active seepage) of the Gulf of Mexico were investigated and compared. Consistent with the existence of a seep microbiome, a distinct microbial community was observed in seep areas compared to sediment from outside areas of active seepage. The microbial community from sediments without any influence from hydrocarbon seepage was characterized by Planctomycetes and the metabolic potential was consistent with detrital marine snow degradation. By contrast, in seep samples with methane as the principal hydrocarbon, methane oxidation by abundant members of ANME-1 was likely the predominant process. Seep samples characterized by fluids containing both methane and complex hydrocarbons, were characterized by abundant Chloroflexi (Anaerolinaceae) and deltaproteobacterial lineages and exhibited potential for complex hydrocarbon degradation. These different metabolic capacities suggested that microorganisms in cold seeps can potentially rely on other processes beyond methane oxidation and that the hydrocarbon composition of the seep fluids may be a critical factor structuring the seafloor microbial community composition and function.


Assuntos
Hidrocarbonetos/metabolismo , Metagenômica/métodos , Metano/metabolismo , Archaea/genética , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Golfo do México , Água do Mar/microbiologia
15.
Sci Rep ; 7: 41948, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165046

RESUMO

Until now, the potential of NGS for the construction of barcode libraries or integrative taxonomy has been seldom realised. Here, we amplified (two-step PCR) and simultaneously sequenced (MiSeq) multiple markers from hundreds of fig wasp specimens. We also developed a workflow for quality control of the data. Illumina and Sanger sequences accumulated in the past years were compared. Interestingly, primers and PCR conditions used for the Sanger approach did not require optimisation to construct the MiSeq library. After quality controls, 87% of the species (76% of the specimens) had a valid MiSeq sequence for each marker. Importantly, major clusters did not always correspond to the targeted loci. Nine specimens exhibited two divergent sequences (up to 10%). In 95% of the species, MiSeq and Sanger sequences obtained from the same sampling were similar. For the remaining 5%, species were paraphyletic or the sequences clustered into divergent groups on the Sanger + MiSeq trees (>7%). These problematic cases may represent coding NUMTS or heteroplasms. Our results illustrate that Illumina approaches are not artefact-free and confirm that Sanger databases can contain non-target genes. This highlights the importance of quality controls, working with taxonomists and using multiple markers for DNA-taxonomy or species diversity assessment.


Assuntos
Código de Barras de DNA Taxonômico , Ficus/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Insetos/genética , Análise de Sequência de DNA/métodos , Vespas/genética , Animais , Perfilação da Expressão Gênica , Vespas/classificação
16.
PLoS One ; 9(8): e104427, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25099369

RESUMO

Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments.


Assuntos
Archaea , Bactérias , Biodiversidade , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Microbiologia da Água , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Sequência de Bases , Dados de Sequência Molecular
17.
Appl Environ Microbiol ; 80(15): 4626-39, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837380

RESUMO

Next-generation sequencing (NGS) opens up exciting possibilities for improving our knowledge of environmental microbial diversity, allowing rapid and cost-effective identification of both cultivated and uncultivated microorganisms. However, library preparation, sequencing, and analysis of the results can provide inaccurate representations of the studied community compositions. Therefore, all these steps need to be taken into account carefully. Here we evaluated the effects of DNA extraction methods, targeted 16S rRNA hypervariable regions, and sample origins on the diverse microbes detected by 454 pyrosequencing in marine cold seep and hydrothermal vent sediments. To assign the reads with enough taxonomic precision, we built a database with about 2,500 sequences from Archaea and Bacteria from deep-sea marine sediments, affiliated according to reference publications in the field. Thanks to statistical and diversity analyses as well as inference of operational taxonomic unit (OTU) networks, we show that (i) while DNA extraction methods do not seem to affect the results for some samples, they can lead to dramatic changes for others; and (ii) the choice of amplification and sequencing primers also considerably affects the microbial community detected in the samples. Thereby, very different proportions of pyrosequencing reads were obtained for some microbial lineages, such as the archaeal ANME-1, ANME-2c, and MBG-D and deltaproteobacterial subgroups. This work clearly indicates that the results from sequencing-based analyses, such as pyrosequencing, should be interpreted very carefully. Therefore, the combination of NGS with complementary approaches, such as fluorescence in situ hybridization (FISH)/catalyzed reporter deposition (CARD)-FISH or quantitative PCR (Q-PCR), would be desirable to gain a more comprehensive picture of environmental microbial communities.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Primers do DNA/genética , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecossistema , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/isolamento & purificação
18.
Environ Microbiol ; 16(9): 2777-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24238139

RESUMO

SUMMARY: The Sonora Margin cold seeps present on the seafloor a patchiness pattern of white microbial mats surrounded by polychaete and gastropod beds. These surface assemblages are fuelled by abundant organic inputs sedimenting from the water column and upward-flowing seep fluids. Elevated microbial density was observed in the underlying sediments. A previous study on the same samples identified anaerobic oxidation of methane (AOM) as the potential dominant archaeal process in these Sonora Margin sediments, probably catalysed by three clades of archaeal anaerobic methanotrophs (ANME-1, ANME-2 and ANME-3) associated with bacterial syntrophs. In this study, molecular surveys and microscopic observations investigating the diversity of Bacteria involved in AOM process, as well as the environmental parameters affecting the composition and the morphologies of AOM consortia in the Sonora Margin sediments were carried out. Two groups of Bacteria were identified within the AOM consortia, the Desulfosarcina/Desulfococcus SEEP SRB-1a group and a Desulfobulbus-related group. These bacteria showed different niche distributions, association specificities and consortia architectures, depending on sediment surface communities, geochemical parameters and ANME-associated phylogeny. Therefore, the syntrophic AOM process appears to depend on sulphate-reducing bacteria with different ecological niches and/or metabolisms, in a biofilm-like organic matrix.


Assuntos
Ecossistema , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Consórcios Microbianos , Bactérias Redutoras de Enxofre/classificação , DNA Bacteriano/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/metabolismo
19.
ISME J ; 7(8): 1595-608, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23446836

RESUMO

Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the 'BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel 'ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support alternative metabolic pathways than syntrophic anaerobic oxidation of methane.


Assuntos
Archaea/fisiologia , Biodiversidade , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , California , Sedimentos Geológicos/química , Hibridização in Situ Fluorescente , Oceanos e Mares , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...